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Abstract 
 

As the size of semiconductor devices decreases and the 

structures and materials become increasingly complex, 

manufacturing these devices is becoming more difficult. The 

complexity of IC research and development (R&D) and the 

scale of high-volume manufacturing (HVM) have greatly 

increased the cost and time required to reach final production. 

Chipmakers, equipment manufacturers and software 

companies are exploring and deploying machine learning (ML) 

technology in a wide range of applications, including process 

development, production maintenance, metrology, and yield 

improvement, to address these scale-up issues. With more than 

a decade of expertise deploying ML technology for 

semiconductor manufacturing, Lam Research has developed 

several smart tools and ML solutions to optimize quality, 

efficiency, and productivity and accelerate innovation in 

semiconductor manufacturing. In this paper, two of Lam’s 

smart tools — SEMulator3D® and Equipment Intelligence® 

Data Analyzer (EI-DA) —are introduced to demonstrate how 

Lam’s advanced technology can be used to efficiently 

manufacture state-of-the-art microchips during R&D and 

HVM.  
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Introduction 
     

Fabricating semiconductor chips on silicon wafers is a 

systematic and complicated manufacturing process, involving 

tens of masks, hundreds of pieces of equipment, and thousands 

of specialized process steps. Nearly half of all processes 

require complex chemical plasma processes,[1] in which wafer-

reactor systems are affected by immeasurable microscopic 

physical and chemical interactions between plasma species, 

wafer materials and reactor components.[2,3] These fabrication 

processes pose huge challenges both in process development 

and productivity maintenance, especially at advanced nodes 

with shrinking feature sizes and complex structures and 

materials.  

To find the best process recipe during semiconductor process 

development, thousands of conditions are tested through 

process window exploration. During process development, 

different combinations of plasma parameters, such as pressure, 

power, reactive gas flow and wafer temperature are tested. For 

the most challenging processes involving etching or filling of 

high aspect ratio features, there are many process trade-offs, 

which further increase the amount of testing required to meet 

process requirements. Collecting process test data using silicon 

wafer testing is expensive and time consuming. Typically, it 

costs thousands of dollars and takes weeks of time to perform 

one wafer-based experiment, with multiple experiments 

needed to establish a working process.  

In semiconductor production, tens of thousands of wafers are 

fabricated using hundreds of pieces of equipment. Each piece 

of equipment may contain tens to hundreds of individual 

sensors. As semiconductors shift to higher density chip designs 

at advanced nodes, more complex process flows and stricter 

process specifications are required.  More equipment and 

advanced tool types are being used, comprising a greater 

number of process parameters and changes. This results in a 

higher risk of unintended process shifts and chamber 

mismatches. In addition, an enormous volume of production-

related data is generated every day during manufacturing. 

Processing and analyzing this large amount of complex data 

for process control is challenging, when using traditional 

trouble-shooting techniques. 

In these circumstances, machine learning (ML) has become a 

powerful tool to support both semiconductor research and 

development (R&D) and high-volume manufacturing (HVM).  

Machine learning provides an effective solution to these “large 

data” challenges, analyzing equipment sensor data using 

highly efficient analysis and optimization techniques. Many 

chipmakers, equipment manufacturers and software companies 

are developing and deploying machine learning technology to 

improve manufacturing processes in a wide range of 

applications.[4-6] As a leading semiconductor equipment 

manufacturer, Lam Research has been dedicated to developing 

and exploring machine learning for more than a decade.  

Machine learning, advanced analytics and process modeling 

have been integrated into “Lam smart tools” to help 

chipmakers build an intelligent manufacturing environment. 

Lam’s intelligent manufacturing technologies are being widely 

applied to revolutionize process development and equipment 

maintenance in the semiconductor industry, saving its 

customers millions of dollars and countless hours.  

In this paper, we will focus primarily on two of Lam’s smart 

platforms, SEMulator3D® and Equipment Intelligence® Data 

Analyzer (EI-DA). We will demonstrate how Lam Research 

intelligent technologies can support customers in developing 

state-of-the-art microchips during both process development 

and HVM. A list of the main applications for these products, 

along with their benefits in semiconductor manufacturing, are 

listed in Table 1. SEMulator3D® offers wide ranging 

technology development capabilities with fast and accurate 

“virtual fabrication” of semiconductor devices. EI-DA enables 

big data analytics and modelling, and is used to gain insights 

into equipment behavior, sensor trends, and operational 

performance during HVM. EI-DA provides an effective, 

strategic trouble shooting tool to improve chamber and wafer 

performance. Lam smart tools can help chipmakers reduce 

time-consuming and costly silicon learning cycles and 

accelerate innovation.  

 
Table 1. AI Products and Benefits (Lam Research Applications) 
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SEMulator3D® 

 

Continued semiconductor technology advancement into 3D 

processes has significantly increased the complexity of process 

development. As a result, the traditional build-and-test 

approach to technology development has become excessively 

costly and time-consuming. Predictive, 3D process modeling 

with SEMulator3D® is an alternative approach that can 

dramatically reduce silicon learning cycles and cut 

development costs.  

SEMulator3D® is a three-dimensional virtual fabrication 

software platform capable of simulating advanced 

semiconductor manufacturing processes.[7] The core of this 

software is a robust, physics-driven voxel-based simulation 

engine that creates a regularly spaced, three-dimensional 

model. A full process library is provided in the platform, and 

includes models for deposition, etch, lithography, CMP, and 

other advanced semiconductor manufacturing processes. 

Starting from input design data, SEMulator3D® follows an 

integrated process flow to develop digital twins of actual 3D 

structures created in the fab. “Virtual” metrology can be used 

to make accurate, fast metrology measurements on simulated 

structures. SEMulator3D® electrical analysis capabilities 

enable modeling of electrical resistance and capacitance of 

virtual 3D structures, including extraction of a transistor’s 

electrical characteristics. Virtual Design of Experiments 

(DOE), executed using batch capabilities and advanced 

statistical analysis, can help determine the relative impact of 

key process parameters on device performance. 

SEMulator3D® can simulate realistic geometries created by 

advanced semiconductor processes and provides both visual 

3D modeling and quantitative data to resolve complex process 

problems.[8] It can be used to make better decisions during 

pathfinding, to define appropriate specifications during process 

development and to optimize process windows and improve 

yield. In addition, defect and failure sources can be identified 

and corrected at the early stages of development. These 

capabilities reduce wafer testing costs and cycle time, 

accelerating process development and improving final yield. 

Some of the applications of SEMulator3D® are described 

below. 

 

Process Integration Optimization 

The time and cost of trial-and-error pathfinding for advanced 

semiconductor technologies continues to grow. Virtual 

fabrication is an effective and economical way to perform 

process integration exploration without wafer-based 

development. One of main functions of SEMulator3D® is to 

examine the performance of different process integration 

schemes and to help identify optimal integration pathways. 

With the help of the Expeditor module in SEMulator3D®, 

hundreds or even thousands of DOE splits using different 

process settings can be tested virtually. The best set of 

integration schemes can be located by analyzing the expected 

yield, RC delay and device performance during these virtual 

experiments. SEMulator3D® is capable of predicting the 

potential impact of new integration approaches, improving the 

pathfinding process. A process integration example (a logic 

HKMG short loop flow optimization) is shown in Figure 1[9]. 

To avoid the formation of Tungsten (W) voids, a chamfered 

gate spacer etch step was inserted into an integration flow. The 

positive effects of the insertion of the etch step on W filling 

quality and gate RC performance were demonstrated, and the 

best chamfered condition was also proposed using a virtual 

DOE.  

 

 
Figure 1. Process Integration Optimization. (a) Schematics for 

HKMG W short loop flow. A chamfered gate spacer etch was inserted 

to improve W filling performance. (b) Definition of the chamfer width 

(W) and chamfer height (H) of the chamfered spacer. (c) Schematic 

for W void (marked by blue circle) and HK exposure area on fin 

(marked by blue circle) formed during W filling process. Contour 

maps of chamfer W and chamfer H impacts on (d) void volume and 

(e) HK exposure area, respectively.   

 

Process Specification Definition 

Defining reasonable process specifications is an important part 

of process development and is an essential step in reaching 

satisfactory yield. SEMulator3D® is capable of simulating real 

processes and can provide guidance in understanding the 

impact of current specifications on final yield and device 

performance. Device specifications can be changed or 

optimized based on simulated results. In Figure 2a, process 

specifications that impact the profiles of metal lines in logic 

BEOL loop were explored.[10] Metal line resistance and 

capacitance were extracted based upon calibrated trench 

profile and considering surface scattering effects. To achieve 

minimum RC delay, the specifications for metal line CD and 

depth thickness were specified using a DOE contour map 

(Figure 2b). In Figure 2c-2e, logic FEOL gate etch process 

specifications were examined.[11] In general, corner residues in 

3D gate structures are undesirable, since they can cause 

source/drain to gate shortages. Using a model that included 

corner residues, it was determined that specifically sized 

polysilicon corner residues can actually improve device 

performance, which is a somewhat counterintuitive result. The 

tolerance for polysilicon residues could be determined by 

balancing final yield and device performance during process 

simulation. 



 
 

Figure 2. Process SPEC Definition. (a) 3D model of metal line in logic 

BEOL, along with R/C extraction models. (b) Contour maps of metal 

line CD and depth resistance impacts on resistance, capacitance, and 

RC time delay T, respectively. (c) Schematic for Corner residue size 

definition. (d) Contour map of corner residue width and height 

impacts on device shortage. (e) On and off-state current distribution 

at fin bottom (top figures: no corner residue; bottom figure: with 

corner residue). 

 

Process Window Optimization 

SEMulator3D® can be used to optimize process windows 

during process development through its built-in process 

window optimization (PWO) capabilities. Using virtual 

fabrication, process windows can be defined by performing 

virtual DOEs and specifying a minimum acceptable yield.  

Process parameters can be varied virtually, to ensure that a 

defined process window will generate experimental DOE 

results that meet specific performance success criteria. In 

Figure 3, an example of PWO is shown.  In this figure, the blue 

box represents the baseline yield performance. The PWO 

engine can automatically search for optimized process variable 

combinations with a fixed distribution width, and then provide 

an optimized process window containing the maximum yield 

(pass rate) based upon the virtual results (green box in Figure 

3a). If the yield is not acceptable, the process distribution width 

in SEMulator3D® can be tightened to obtain the targeted yield 

(Figure 3b).[12] In Figure 3c, a process window validation for a 

2D NAND gate etch process is shown.[13] The impact of 

ONO/Poly selectivity and poly etch amount during the ONO 

etch step is displayed.  Different ONO spacer heights can lead 

to the formation of pitting or fence defects in the active areas 

(AA) of the 2D NAND device. This type of defect formation 

can be modelled in SEMulator3D® The defect process window 

based on ONO/poly selectivity and the amount of poly etched 

during the ONO step was explored in a virtual DOE. Virtual 

process modeling revealed that these two parameters need to 

be controlled to an appropriate window (green area) to avoid 

pitting and fence defects (Figure 3d).  

 
 

Figure 3. Process window optimization. (a) Yield prediction and 

improvement by BEOL via contact and metal edge placement error 

process window optimization. (b) Yield enhancement by tightening 

process variables spec with a more reasonable range. (c) Schematics 

for 2D NAND gate pitting and fence defect. Different spacer height 

results in AA pitting defect or fence defect. (d) Contour map of 

ONO/Poly selectivity and poly etch amount at ONO etch step impact 

on final pitting and fence defect window of gate etch. 

 

Model Assisted Defect Reduction 

Defect modelling can improve productivity and yield by 

revealing defect formation mechanisms and by assisting in 

defect reduction efforts. Single or multiple defects can be 

introduced into any process steps during SEMulator3D® 

modelling, and the downstream consequences can then be 

visualized and analyzed. By comparing and matching 

simulated results vs. actual defect images, failure sources can 

be identified.  Virtual DOEs that vary the defect size, material, 

shape and other criteria can be executed, and the impact of 

these defects can be predicted in the early stages of product 

development or identified during HVM.  In Figure 4, 3D 

models and cut through views reveal how gate-cut poly residue 

defects form.[14] Using virtual fabrication, it was found that 

lower selectivity to SOC in the gate-cut trench during the oxide 

main etch step resulted in a pad oxide layer breakthrough and 

subsequent polysilicon oxidation during the SiN etch and SOC 

strip steps.  This failure created a sidewall micro mask and 

subsequently created final poly residue defects. Virtual top-

down images match the actual top-down image of the defect on 

the Si wafer. This modelling reveals key steps during gate-cut 

defect formation and could be used to avoid the defect and 

solve related yield issues. 
 

 
Figure 4. Modelling for gate line end residue. (a) Schematics of defect 

 

 



formation during the gate-cut flow. (b) Top view images that 

demonstrate defect formation process and match with actual wafer 

results. 

 

SEMulator3D® provides silicon accurate, industrial 

compatible solutions for visualization, defectivity analysis, 

path finding and process window optimization. These 

functions can be used during the R&D stages of new 

technology development and during high-volume 

manufacturing. Virtual fabrication saves time and money, 

speeds up the time to solution, and provides an eco-friendly 

semiconductor development solution. 

 

Equipment Intelligence® Data Analyzer 

  

By analyzing large and diverse datasets, engineers can gain 

insights into equipment behavior, sensor trends, and 

operational performance, leading to more effective and 

strategic decision-making. Lam’s Equipment Intelligence® 

(EI)-enabled products were developed to address specific 

customer’s large data analysis needs. Lam’s EI-DA platform 

brings machine learning into traditional semiconductor 

manufacturing. The Lam EI also includes Equipment 

Intelligence® Management (EIM) and Equipment Intelligence® 

Data Hub (EI-DH). Various types of Lam files, including 

sensor trace data, datalog, eventlog, history log, process 

recipe, OES files and hardware CV, can be centralized to 

enable cross-subsystem analysis, offering unprecedented 

perspective on quantitative measurements of tool performance.  

EI-DA uses big data and machine learning during traditional 

semiconductor production processes, empowering smart 

manufacturing using existing data. Data from tool sensors 

during wafer processing is analyzed to detect mismatched 

chambers and other problems, and to subsequently drill down 

to a root cause and correction. Lam uses a big data, multivariate, 

machine learning approach, which looks at many signals 

within a chamber or within a chamber subsystem. Data-driven 

thinking surpasses the limitations of empirical approaches, 

while advanced machine learning algorithms endows EI-DA 

with fast computational capabilities far beyond manual 

techniques. The advantages of the EI-DA platform are most 

evident during high volume manufacturing. Mass production 

fabs produce large amounts of data and have a significant 

number of challenges. In the subsequent sections, we will 

discuss specific case studies to explain the advantages of EI-

DA in chamber recovery, performance prediction, 

visualization solutions and cross-subsystem issue trouble 

shooting. 

 

Fast Chamber Recovery by Principal Component Analysis 

 

Lam EI-DA has advantages in fast chamber recovery, 

especially when issues arise without a noticeable change in the 

sensor trace. In general, limited parameters are manually 

checked during tool troubleshooting, which is inefficient and 

costly. Using EI-DA, data from all equipment sensors in every 

chamber is collected, and Principal Components Analysis 

(PCA) can be used to determine patterns and correlations 

among various features in the dataset.[15] To find a strong 

correlation between different variables, data dimensionality 

reduction is used to help in data visualization. In this way, PCA 

can be utilized for rapid root cause corrective actions (RCCA).  

In Figure 5a, equipment sensor data from processing a wafer is 

used to generate a Principal Components (PC) value 

representing chamber conditions during processing of this 

wafer. The PC value shifts when a chamber issue occurs and 

shifts back to normal levels after troubleshooting and 

correction. Wafers with abnormal PC values are labeled in red, 

while normal wafers are labeled in blue, to help better 

understand chamber condition differences. PCA analysis 

allows the top contributors to the difference in chamber 

conditions to be extracted and ranked by importance (Figure 

5b). Contributions from each of the tool settings to the sensor 

parameter shift are also shown in the PCA analysis using 

different colors. Looking at the importance of each tool setting 

or step in our example, the ESC temperature control loop 

setting stands out be the most likely root cause. A noticeable 

grouping of red (abnormal wafers) and blue (normal wafers) 

for the ESC temperature output parameter is shown (Figure 5c). 

When the ESC temperature control issue is fixed, the PC value 

trends back to its normal range, and acceptable chamber 

performance resumes (Figure 5a).  

Determining root causes of chamber failures is a challenging 

task using manual sensor scanning. Using EI-DA, more rapid 

chamber recovery is possible, shortening troubleshooting cycle 

time, increasing tool uptime, avoiding wafer scrap and 

enhancing productivity.  

 

 
Figure 5. Chamber recovery with PCA analysis. (a) Principal 

component value of wafers processed in the chamber. (Each point 

represents one wafer condition. PC values labeled in red represent 

abnormal wafers, blue represents normal wafers) (b) Variable 

importance ranking in multi-step diagram (Each color represents a 

step and each bar represent a sensor. The bar length displays the sum 

of contributions of all steps) (c) ESC temperature output sensor trace 

value by step time.   

 

Chamber Conditions Shift Prediction using a MD Model 

 

A Mahalanobis Distance (MD) model is employed in EI-DA to 

monitor chamber conditions. Advance warnings identify 

chamber condition shifts, preventing issues and reducing tool 

downtime. MD is one of the most widely used metrics to 

identify by how much a data point diverges from a distribution 

of data, based upon measurements in multiple dimensions. It is 

widely used in the field of cluster analysis and classification.[16] 

A lower MD value denotes higher similarity, so it can be used 

as an indicator to monitor outlying process chamber conditions.  

In Figure 6a, an image of a specific MD monitoring model is 

shown for Chamber A on a semiconductor fabrication tool. 

When a chamber is in proper operating condition, the MD 



value is stable and remains below the control line. When the 

MD value trends up and triggers an alarm (goes above the 

control line), this indicates that there is something abnormal in 

the chamber. Using EI-DA analytics, the root cause in this 

instance was identified as an abnormal pressure manometer 

reading, which is shown as an obvious outliner for chamber A 

(Figure 6c). After this issue was resolved, the pressure 

performance moved back to the value of the other chambers. 

Accordingly, the MD value of Chamber A regresses to a 

normal level (Figure 6b). The pressure manometer value would 

normally appear to be stable for Chamber A, so it is easily 

ignored based upon the data received from equipment sensors. 

Using an MD model, all sensor conditions are included and 

monitored using a single parameter. Potential chamber 

condition risks can be detected, and corrective action can be 

taken to eliminate potential issues and reduce tool down time. 

 

 
 
Figure 6. Chamber monitoring by MD model. (a)-(b) MD value 

monitoring of chamber A. (c) Process manometer value trace for 

multiple chambers. (Each color represents a chamber) 

 

Visualization Assisted Throughput Optimization and Wet 

Clean Optimization  
 

EI-DA provides new visualization solutions for traditional 

issues, including throughput optimization during wafer 

processing and chamber wet clean optimization (WCO). 

Throughput optimization has always been one of the core cost 

control issues during semiconductor mass production. 

However, throughput issues and root cause identification are 

usually difficult to identify at the host level. EI-DA is a 

powerful tool to identify issues and improve wafer throughput 

using big data analysis and machine learning. In Figure 7a, 

process time for a semiconductor production application in 

different chambers is statistically plotted and compared. 

Certain chambers display a longer process time than others. 

After analyzing the detailed process steps, the root cause in EI-

DA was identified as being related to some “stable” process 

steps. After trouble shooting, throughput of the abnormal 

chambers was improved and was consistent with the other 

normal chambers. 

Wet clean duration is also a crucial factor affecting tool uptime 

during mass production. WCO is a Lam Research’s solution to 

help optimize the wet clean process. Normally, it is very 

difficult to identify the chamber condition after the wet clean 

process and to quantify the effectiveness of WCO. Lam 

Research provides an enhanced WCO service by combining 

WCO with EI-DA, and performing chamber condition analysis 

both before and after WCO. In Figure 7b, a number of 

chambers display an out of bound condition prior to the WCO 

process.   After WCO, the out of bound chambers match the 

performance of the group of chambers that remained within 

normal bounds. Management and visualization of chamber 

health and condition before and after wet clean is an effective 

way to reduce wet clean frequency and minimize wet clean 

duration. 

 

 
Figure 7. Visualization Assisted Throughput Optimization and Wet 

Clean Optimization. (a) Throughput analysis by chamber. (each 

boxplot represents the process time distribution of an individual 

chamber） (b) Chamber groupings by PCA before and after WCO. 

(Each color represents one chamber condition. Chambers with red 

circles are shifted outside threshold bounds, but move back inline with 

other chambers after WCO and are subsequently marked in green)   
 

Cross-subsystem Issue RCCA  
 

EI-DA also has great advantages in RCCA (root cause 

corrective action), using a systemic analytical approach to 

identify complicated and cross-subsystem equipment issues.  

In particular, issues resulting from multiple subsystem shifts 

can be difficult and time consuming to troubleshoot and 

identify. Sometimes, inconsistent and misleading results can be 

generated when only one factor is considered during RCCA.  

Figure 8 provides an example of inline performance control 

using EI-DA cross-subsystem troubleshooting.  It highlights an 

example of how EI-DA can effectively isolate cross-subsystem 

issues. In this example, a problematic chamber is suffering 

from an inline performance shift over a very long period of 

time (Figure 8a).  A series of corrective actions are tested and 

turn out to be ineffective in resolving the issue. Using EI-DA 

and PCA analysis, the root cause of this chamber shift is 

identified as having been caused by 3 separate subsystems 

issues. In the beginning, the problematic chamber (marked in 

pink) is far outside the performance bounds of the main group 

of chambers (Figure 8c). The RCCA process required 3 

corrective steps to 3 different subsystems to resolve the issue. 

Combining actions A, B and C, the chamber condition of the 

abnormal chamber moved into the performance range of the 

normal group. It is evident that every corrective action taken 



was effective because the chamber condition changed after 

each action and brought the problematic chamber performance 

closer to the performance of the other chambers. 

Correspondingly, the inline data after these 3 actions were 

complete is plotted in Figure 8b. The inline performance was 

further from the control limit after Action A. In a traditional 

troubleshooting process, this could have been easily mistaken  

 
 

Figure 8. Inline performance control by EI-DA cross-subsystem 

trouble shooting. (a) Inline profile angle boxplot of chambers. A 

problem chamber is marked in red. (b) Issue chamber inline profile 

angle trace after A/B/C actions. (c) Chamber condition analysis with 

PCA. The problematic chamber (marked in pink) moves within 

bounds (within the performance range of other chambers) after 

corrective action.   
 

for an irrelevant or even incorrect corrective action. This 

counterintuitive corrective operation only became evident with 

the assistance of EI-DA visualization of all chamber conditions. 

EI-DA opens up a new approach to solve cross-system issues, 

by considering chamber conditions as a whole. 

 

 

Wafer Performance Prediction by Regression Modeling 
 

Inline performance control is critical for yield improvement. 

During fab production, time-consuming and costly metrology 

techniques are normally used for inline monitoring. Only a few 

wafers are generally used during conventional inline metrology, 

due to time and cost issues. This type of metrology is facing 

challenges, due to the limited sampling frequency involved.  

Out-of-control (OOC) events can be missed during limited 

sampling, along with missed opportunities for troubleshooting 

(Figure 9a). Lags in metrology results lead to time gaps in 

resolving production issues, which contributes to high wafer 

scrap risks.  

Using regression modeling after training with actual inline Si 

wafer data, EI-DA can predict inline performance with high 

reliability immediately after wafer processing is complete. As 

shown in Figure 9b, predicted inline values match quite well 

with actual wafer performance (R-Squared value of 0.92). 

Applying this prediction model to 5 total chambers, the 

regression model displayed good matching results (compared 

to actual data) with high R-Squared values (Figure 9c). The EI-

DA prediction was reliable and close to actual measurement 

values. Compared to traditional metrology (Figure 9a), EI-DA 

inline prediction is a very effective and economical way to 

perform inline monitoring, allowing every processed wafer to 

be measured. Corrective actions can be conducted in a timely 

manner using EI-DA, with a subsequent improvement in wafer 

performance variability through timely intervention during 

OOC events.  

 

 
Figure 9. Inline prediction by regression model. (a) Schematic of fab 

actual measurement and inline prediction by EI-DA. (b) Inline CD 

prediction by regression model (c) Table of regression R-Squared for 

inline CD prediction in different chambers. 

 

Conclusion 
 

Despite the complexity of manufacturing advanced 

semiconductor devices, innovations in machine learning and 

other techniques are helping to meet the demands of next-node 

semiconductor manufacturing. Lam’s machine –learning based 

predictive modeling techniques are accelerating R&D and 

enabling chipmakers to reach high volume manufacturing 

faster, while providing process developers with new insights 

and greater efficiency. As the semiconductor industry 

continues to evolve, machine learning and data-based 

modeling will certainly be part of its future. These tools will be 

used to develop next generation microchips, accelerate 

manufacturing process development and provide higher 

productivity and yield. Lam EI-DA assisted manufacturing 

provides advanced capabilities to help address the most 

complex and difficult manufacturing challenges and are 

destined to become an integral part of smart semiconductor 

manufacturing. 
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